機床切削加工的進一步應用
時間:2010年06月09日瀏覽:1509次收藏分享:
機床的切削加工進一步應用電子計算機技術、新型伺服驅動元件、光柵和光導纖維等新技術,簡化機械結構,提高功率主運動和進給運動的速度,相應提高結構的動、靜剛度以適應采用新型刀具的需要,提高切削效率;提高和擴大自動化工作的功能,使機床適應于納入柔性制造系統工作;提高加工精度并發展超精密加工機床,以適應電子機械、航天等新興工業的需要;發展特種加工機床,以適應難加工金屬材料和其他新型工業材料的加工。
表面形成運動是使工件獲得所要求的表面形狀和尺寸的運動,它包括主運動、進給運動和切入運動。主運動是從工件毛坯上剝離多余材料時起主要作用的運動,它可以是工件的旋轉運動(如車削)、直線運動(如在龍門刨床上刨削),也可以是刀具的旋轉運動(如銑削和鉆削)或直線運動(如插削和拉削);進給運動是刀具和工件待加工部分相向移動,使切削得以繼續進行的運動,如車削外圓時刀架溜板沿機床導軌的移動等;切入運動是使刀具切入工件表面一定深度的運動,其作用是在每一切削行程中從工件表面切去一定厚度的材料,如車削外圓時小刀架的橫向切入運動。
評價機床技術性能的指標最終可歸結為加工精度和生產效率。加工精度包括被加工工件的尺寸精度、形狀精度、位置精度、表面質量和機床的精度保持性。生產效率涉及切削加工時間和輔助時間,以及機床的自動化程度和工作可靠性。這些指標一方面取決于機床的靜態特性,如靜態幾何精度和剛度;而另一方面與機床的動態特性,如運動精度、動剛度、熱變形和噪聲等關系更大。